OPTIMIZATION OF TECHNOLOGY OF OBTAINING BIOCOMPOSITES FILLED WITH CHOPPED STALKS OF GRAIN CROPS

Main Article Content

O. SADOVA
https://orcid.org/0000-0002-6152-5447
М. M. VYSHYNSKYI

Abstract

 


Purpose. To optimize the temperature-time modes of heat treatment of highly filled biocomposites based on glutin and chopped stalks of grain crops, formed by the method of hot pressing of the composition.


Method. A glutinous solution used as a matrix for the formation biocomposites with a high degree of filling. As a filler used chopped stalks of grain crops in fractions of 0.5 and 0.7, pre-dried for 1 hour at a temperature of 50-60 °C. Biocomposite samples formed by the method of hot pressing of the composition. The compressive strength limit determined by compressing cylindrical samples with a diameter of 20 mm and a height of 40-45 mm using a static load at a speed of movement of the lower traverse of the press of 2 mm/min.


Results. The topical direction of modern materials science in the area of composite materials is the development of eco-friendly biocomposites, since the polymer matrix is biodegradable and renewable sources. This direction is new, therefore, it requires the development of the composition and production technology of biocomposites, as well as the study of their properties.


In the article, various forming technologies and heat treatment regimes developed in order to increase the strength of highly filled biocomposite materials based on glutin and crushed stalks of grain crops.


Scientific novelty. It discovered for the first time that at the last stages of structuring biococomposites, it is necessary to lower the temperature of heat treatment (drying) and increase  its duration, which will ensure the avoidance of structural defects (cracks) in the material. The technology of obtaining biocomposite products has been optimized due to the drying of biocomposite materials after the main and additional heat treatment. This complicated the technology of obtaining products from biocomposites, but made it possible to remove excess moisture from the materials. Moisture gets into the material from the glutin solution, which is prepared by pouring bone glue with water, that is necessary for the formation of the composition. Long-term drying of biocomposites at low temperatures ensures uniform gradual removal of moisture from the material without the formation of cracks. The compressive strength of biocomposites produced using this technology is 53.3 MPa.


Practical significance. The developed biocomposite materials are biodegradable and environmentally friendly. Therefore, it is advisable to use them for the production of disposable containers, which will solve the problem of waste disposal and improve the ecological safety of the environment.

Article Details

How to Cite
SADOVA, O., & VYSHYNSKYIМ. M. (2022). OPTIMIZATION OF TECHNOLOGY OF OBTAINING BIOCOMPOSITES FILLED WITH CHOPPED STALKS OF GRAIN CROPS. Tovaroznavchiy Visnik, 2(15), 72-82. https://doi.org/10.36910/6775-2310-5283-2022-16-6
Section
MATERIAL SCIENCE
Author Biographies

O. SADOVA, Lutsk National Technical University

candidate of technical sciences, associate professor, associate professor of the Department of Materials Science

М. M. VYSHYNSKYI, Lutsk National Technical University

postgraduate student of the specialty "Materials Science"

References

1. J. Maitra and N. Singh, Swelling behavior of starch chitosan polymeric blend, An Int. J., vol. 4, no. 2, 2014. РР. 22-27.
2. F. Le Digabel, N. Boquillon, P. Dole, B. Monties, and L. Averous, Properties of thermoplastic composites based on wheat-straw lignocellulosic fillers, J. Appl. Polym. Sci., vol. 93, no. 1, 2004. РР. 428-436.
3. H. Elsayed, M. Farag, H. Megahed, and S. Mehanny, Influence of flax fibers on properties of starch-based composites, in Volume 3: Design, Materials and Manufacturing, Parts A, B, and C, 2012. Р. 1397.
4. Biopolymers and Biocomposites: Chemistry and Technology Ilyas, R.A.; Sapuan, S.M. Current Analytical Chemistry, Volume 16, Number 5, 2020, pp. 500-503(4).
5. Ilyas RA, Sapuan SM, Ishak MR, Zainudin ES. Sugar palm nanofibrillated cellulose (Arenga pinnata (Wurmb.) Merr): Effect of cycles on their yield, physic-chemical, morphological and thermal behavior. International Journal of Biological Macromolecules. 2019. Р.379-388. https://doi.org/10.1016/j.ijbiomac.2018.11.124
6. Кашицький В.П., Садова О.Л., Савчук П.П., Малець В.М., Мазурок В.С., Мисковець С.В. Оптимізація складу та технології формування біокомпозитів на основі крохмального в’яжучого. Наукові нотатки. Випуск 71. 2021. С. 353-359.
7. Кашицький В. П. Розробка біокомпозитів, наповнених продуктами переробки вторинної сировини рослинного походження. Вісник Вінницького політехнічного інституту. Випуск 1 (160). 2022. С. 95-102.
8. Кашицький В.П., Садова О.Л., Шум Н.В. Розробка технології отримання біокомпозитів на основі глютину та деревного борошна. Товарознавчий вісник: збірник наукових праць. Випуск 15, том 1. 2022. С. 308-316. DOI:10.36910/6775-2310-5283-2022-15-27

1. J. Maitra and N. Singh, Swelling behavior of starch chitosan polymeric blend, An Int. J., vol. 4, no. 2, 2014. RR. 22-27.
2. F. Le Digabel, N. Boquillon, P. Dole, B. Monties, and L. Averous, Properties of thermoplastic composites based on wheat-straw lignocellulosic fillers, J. Appl. Polym. Sci., vol. 93, no. 1, 2004. RR. 428-436.
3. H. Elsayed, M. Farag, H. Megahed, and S. Mehanny, Influence of flax fibers on properties of starch-based composites, in Volume 3: Design, Materials and Manufacturing, Parts A, B, and C, 2012. R. 1397.
4. Biopolymers and Biocomposites: Chemistry and Technology Ilyas, R.A.; Sapuan, S.M. Current Analytical Chemistry, Volume 16, Number 5, 2020, pp. 500-503(4).
5. Ilyas RA, Sapuan SM, Ishak MR, Zainudin ES. Sugar palm nanofibrillated cellulose (Arenga pinnata (Wurmb.) Merr): Effect of cycles on their yield, physic-chemical, morphological and thermal behavior. International Journal of Biological Macromolecules. 2019. R.379-388. https://doi.org/10.1016/j.ijbiomac.2018.11.124
6. Kashytskyi V.P., Sadova O.L., Savchuk P.P., Malets V.M., Mazurok V.S., Myskovets S.V. Optymizatsiia skladu ta tekhnolohii formuvannia biokompozytiv na osnovi krokhmalnoho viazhuchoho. Naukovi notatky. Vypusk 71. 2021. S. 353-359.
7. Kashytskyi V. P. Rozrobka biokompozytiv, napovnenykh produktamy pererobky vtorynnoi syrovyny roslynnoho pokhodzhennia / V.P. Kashytskyi, O.L. Sadova, O.V. Zabolotnyi, V.M. Malets, V.S. Mazurok // Visnyk Vinnytskoho politekhnichnoho instytutu. – Vypusk 1 (160). 2022. S. 95-102.
8. Kashytskyi V.P., Sadova O.L., Shum N.V. Rozrobka tekhnolohii otrymannia biokompozytiv na osnovi hliutynu ta derevnoho boroshna // Tovaroznavchyi visnyk: zbirnyk naukovykh prats. Vypusk 15, tom 1. 2022. S. 308-316. DOI:10.36910/6775-2310-5283-2022-15-27